
Markovito Team Description Paper

for RoboCup@Home 2020

L. Enrique Sucar1 Eduardo F.Morales1 Sergio A. Serrano1

Arqúımides Méndez-Molina1 Reinier Oves Garćıa1

David Carrillo-López1 Esaú Escobar-Juárez1

February 4, 2020

Abstract. In this paper we present the current status of Markovito Jr.,
a service robot developed by the Markovito team at INAOE. Our robot is
based on a RB1 robot platform and incorporates a set of general purpose
modules that are integrated in a layered behavior-based architecture im-
plemented on the Robot Operating System (ROS). The current research
is focused on the development of novel algorithms for object detection
and manipulation, people tracking, learning, as well as improvements on
our modular software architecture. Important results were recently ob-
tained by our group in robust indoor navigation and grasp confirmation
at Mexican International Conference of Artificial Intelligence, 2019. In
the context of robotics competitions our team has achieved important
results in the national contests and also has previous participation at the
International RoboCup@Home.

1 Introduction

Robotics in its evolution has been leaving aside the repetitive tasks of controlled
industrial environments and, with a new generation of skilled robots in the exe-
cution of domestic tasks known as service robots, is getting involved in dynamic
environments with human interaction. When introducing service robots into so-
ciety, they are expected to have skillful mechanisms to perform most of the tasks
a human can perform.

Service robotics is a challenging, and exciting field that for several years has
motivated our research group Markovito 1 at INAOE. With our robotic platform
we actively develop research in many subfields of service robotics. The Mexican
Tournament of Robotics (TMR) has been the main competitive platform to test
our results annually.

1 Markovito Home Page: http://robotic.inaoep.mx/~markovito/

1

http://robotic.inaoep.mx/~markovito/
http://robotic.inaoep.mx/~markovito/


2

Besides the good historical results obtained in the robotics competitions, the
philosophy of our group is mostly focused on research in the various areas related
to service robotics. As a result, our group has achieved several publications in
international journals and conferences, and has served for several students from
INAOE to successfully develop their master’s and doctoral theses.

In this Team Description Paper we present the current research carried out by
our group, which is directly related to achieving the fundamental skills required
by a service robot in the context of the RoboCup@Home contest. The rest of
the paper is structured as follows: in section 2 we describe our team in more
detail; section 3 presents the general software architecture we use; an overview
of the latest research developments in our laboratory in the different robot skills
is presented in section 4; finally the conclusions and some lines of future work
are presented.

2 Group’s description and research focus

Markovito’s team is composed of researchers and students from the Robotics
Laboratory of INAOE. The laboratory was created in 2007, however, the first
research in the field of robotics dates back to 2001. Before our current robotic
platform Markovito Jr. (2017 - ), we used Sabina (2012 - 2017) and the original
Markovito (2007 - 2012).

The team integrates graduate students and B.Sc. students on research stays.
This year the team is composed by (3) researchers, (1) post-doctoral student,
(3) Phd students and (3) students on research stays.

The Markovito team has participated in the RoboCup@Home category at
previous RoboCup competitions in 2009, 2011, 2012 and 2016; in Turkey 2011
our team qualified for the second stage of the competition. In 2015 and 2016, the
Markovito team won a 1st place in the Mexican RoboCup@Home competition.

Currently, our group’s main research topics are computer vision, speech
recognition, people tracking, safe indoor navigation within dynamic environ-
ments, task planning, robust object manipulation and gesture recognition. Some
details of our current work are explained in section 4.

3 Markovito’s Architecture

Markovito’s software architecture has been designed and developed as a layered
behavior-based [1] architecture that uses ROS [2] for communication (see Fig.
1). The architecture has three different levels:

1. Decision level: This is the highest level in the architecture, where a state
machine is used as a global coordinator. A particular state machine is spec-
ified for each task to obtain a determined behavior.



3

2. Execution level: Modules in this level interact with the functional level
through ROS architecture. This level includes the modules to perform basic
tasks such as navigation, object manipulation, speech recognition, etc.

3. Functional level: At this level the modules interact with the robot’s sen-
sors and actuators, relaying commands to the motor or retrieving information
from the sensors.

Fig. 1. Software architecture of Markovito: a layered behavior-based architecture that
uses ROS for communication.

At the execution level, the robot’s skills are encapsulated into general purpose
modules. By doing so, programming the robot to solve different tasks becomes
less time consuming and endows the architecture with scalability, which becomes
more important as new modules are required.

4 Markovito’s skills and current work

In this section we present the most recent work on Markovito’s skill set, which
encompasses indoor navigation in dynamic environments, people tracking, speech
recognition, object recognition and robust object grasping and manipulation.

4.1 Indoor Navigation

The navigation algorithm that we are currently using (with some modifications)
was designed by the Active Vision Group (AGAS) [3]. They present and explain
the use of their software which they call Homer GUI, Homer mapping and Homer
navigation corresponding to the graphical user interface, mapping algorithm and
navigation algorithm, respectively. This software uses a particle filter to solve
the SLAM problem and the A* algorithm for path planning.



4

The navigation system developed by AGAS was modified by integrating a
depth image sensor, which gathered point clouds of the robot’s surroundings
and projected them onto the two dimensional plane (that corresponds to the
floor) [4], as shown in Fig. 2. The projected points were combined with laser
data so that the robot could identify obstacles at different heights above the
floor, unlike the original system which could only detect obstacles at the level
of the laser sensor (usually installed in the robot’s mobile base). Additionally,
our navigation system is able to re-plan a path to its target location when static
(e.g., furniture) and dynamic obstacles (e.g., people, pets) are hindering, which
is important for the safety of the robot and people in a real scenario.

(a) Laser contribution (b) RGB-D contribution (c) Fused data

Fig. 2. Static occupancy grid map used for Small Scattered Obstacles scenario inte-
grating laser and RGB-D (figure taken from [4]).

4.2 People tracking

Our people tracking system is based on visual information obtained from the
robot’s RGB and depth image sensors. The system is able to keep track of
multiple people within its range of view by performing at every instant of time
a procedure that follows four main steps:

1. Segmentation on the depth image is performed to obtain a vector of blobs
and their position with respect to the robot’s framework.

2. In order to track the blobs, those from the current instant are matched to
those from the previous one, based on the Euclidean distance.

3. The Single Shot Detection (SSD) neural network [5] is employed to recognize
people in the RGB image of the current instant, if a person is found then its
bounding box is extracted.

4. The bounding boxes of people found in the previous step are matched against
the depth image in order to filter out those blobs that are not people. In Fig.
3 is shown an example of the robot locating a person within its map.



5

Fig. 3. Example of the tracking system locating a person within its map. The upper
left image shows the depth image segmented into two blobs: a person (orange) and the
background (pink). Next to the depth image, in the RGB image the person’s bounding
box is extracted using a pre-trained CNN. In the bottom of the figure the location of
the robot (blue square) and the tracked person (fuchsia square) are shown within the
robot’s map.

In order to follow somebody, after the system projects the position of the person
of interest in the map the robot uses to navigate, the robot knows where the
person is within the map and can safely get closer without crashing into potential
obstacles, for instance, tables and chairs. Additionally, because of the simplicity
of our approach, it does not require of a GPU to work in real time.

4.3 Speech Recognition and Synthesis

We use the Pocket Sphinx [6] engine for speech recognition. Several grammar
files (or sets of recognizable phrases) are defined depending on the task to be
performed by the robot. The system can only identify the phrases or words
defined in its grammar. The coordinator sets the right set of phrases to be used
by the speech recognition module on each task. For synthesis we use Festival [7].

4.4 Object and people recognition

Among the sensors Markovito is equipped with, imagery (both RGB and depth)
provide the most descriptive information about the robot’s immediate surround-
ings. However, in order to exploit such rich data and extract from it useful infor-
mation, we employ convolutional neural networks (CNN). Currently, our robot
identifies two main categories of entities in images:



6

1. People: For tasks that require Markovito to identify people’s location within
the room, it uses the SSD network [5], which returns a list of boxes that
enclose people in the RGB image. Moreover, our robot is also able to perform
face recognition, based on the tiny face detector network [8] which is capable
of identifying faces even with low resolution. Similar to SSD, the tiny face
detector returns boxes that enclose the faces found in an image.

2. Objects: Unlike for people recognition, in which we use a CNN to crop
areas of an image that contains a person or its face, for object recognition
our system performs segmentation on depth images to locate where objects
are with respect to the robot’s framework. Currently an important constraint
is that the objects must be over a flat surface. Then, it extracts the bounding
boxes in the RGB image that correspond to the location of the objects in
the depth image. Finally, the RGB snippets are classified with a pre-trained
CNN (VGG [9]) that has been retrained to classify a set of known objects.

Currently, one research line of the group is focused on the creation of an
incremental learning scheme of objects in the scene (not necessarily on flat
surfaces) so that a human instructor can progressively teach new objects to
the robot. Once the robot incorporates the new objects learned, the idea is
that it will be able to detect any appearance of these in the scene simul-
taneously. We are currently reviewing YOLO[10] and SSD[5] approaches to
include some modifications to add new objects to the database to make the
retraining as inexpensive as possible.

Fig. 4. Objects are located by performing segmentation on the depth image.

4.5 Object manipulation and grasping

For tasks that require the robot to pick up and move objects, we employ GraspIt!
[11] in tandem with MoveIt [12], which are two libraries developed for object
manipulation tasks. The former is for identifying the best grasp position for a
particular object and the robot’s end effector, while the latter performs motion
planning.



7

Although GraspIt! and MoveIt have shown to be quite effective and accurate,
a robot remains prone to fail at grasping objects as a consequence of exogenous
factors, e.g., somebody moving the target object after the manipulator started
approaching, or the object slips from the robot’s gripper. Moreover, since in
many cases other sub-tasks will depend on the robot’s success in grasping an
object (as part of a larger task), failing at picking up an object might have a
high cost, therefore, feedback is required.

In order to endow the robot with a source of feedback, we developed a grasping
confirmation mechanism that is low time consuming and quite robust [13]. We
specified a position for the robot’s gripper in which it could be observed by
the robot without occlusion (as shown in Fig. 5). Fine tuning was performed to
a pre-trained neural network by training the fully connected layers to identify
two classes of images: i) empty gripper and ii) gripper holding something. Thus,
after our robot attempts to grasp an object, it takes the gripper to the predefined
position and verifies if it succeeded, if not, it can decide whether to try it again
or move onto the next sub-task.

Fig. 5. Flowchart of our grasp confirmation mechanism (image taken from [13]).

5 Conclusions and future work

In this document, Markovito’s software architecture has been described. We have
developed a set of general purpose modules, integrated in a layered behavior-
based architecture that communicates its modules with ROS. These features
enable Markovito to perform on tasks that are made of sub-tasks that can be
solved with Markovito’s skills, such as the RoboCup@Home tasks. Based on this
framework and different platforms, we have participated in the Mexican Robotic
Tournament since 2007 achieving top positions each year. For instance, in 2015
and 2016 we won a 1st place in the Mexican RoboCup@home competition. We
have also participated in the international Robocup@Home competition in 2009,



8

2011, 2012 and 2016. In order to suffice the needs of a real world scenario, we
believe that integrating reactive behavior becomes a must, so that a robot is
ready to solve tasks at any time. Also, as future work we would like to enable
the system to dynamically build state machines based on task requests.

References

1. Ronald C Arkin, Ronald C Arkin, et al. Behavior-based robotics. MIT press, 1998.
2. Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

3. Viktor Seib, Raphael Memmesheimer, and Dietrich Paulus. A ros-based system for
an autonomous service robot. In Robot Operating System (ROS), pages 215–252.
Springer, 2016.

4. Orlando Lara-Guzmán, Sergio A Serrano, David Carrillo-López, and L Enrique
Sucar. Rgb-d camera and 2d laser integration for robot navigation in dynamic
environments. In Mexican International Conference on Artificial Intelligence, pages
661–674. Springer, 2019.

5. Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

6. David Huggins-Daines, Mohit Kumar, Arthur Chan, Alan W Black, Mosur Rav-
ishankar, and Alexander I Rudnicky. Pocketsphinx: A free, real-time continuous
speech recognition system for hand-held devices. In 2006 IEEE International Con-
ference on Acoustics Speech and Signal Processing Proceedings, volume 1, pages I–I.
IEEE, 2006.

7. Alan Black, Paul Taylor, Richard Caley, Rob Clark, Korin Rich-
mond, Simon King, Volker Strom, and Heiga Zen. The festival speech
synthesis system, version 1.4.2. Unpublished document available via
http://www.cstr.ed.ac.uk/projects/festival.html, 2001.

8. Peiyun Hu and Deva Ramanan. Finding tiny faces. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 951–959, 2017.

9. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

10. Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

11. Andrew T Miller and Peter K Allen. Graspit! a versatile simulator for robotic
grasping. 2004.

12. Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit![ros topics]. IEEE Robotics
& Automation Magazine, 19(1):18–19, 2012.

13. Sebastián Salazar-Colores, Arqúımides Méndez-Molina, David Carrillo-López,
Esaú Escobar-Juárez, Eduardo F Morales, and L Enrique Sucar. A fast and ro-
bust deep learning approach for hand object grasping confirmation. In Mexican
International Conference on Artificial Intelligence, pages 601–612. Springer, 2019.



Annex I |
Markovito Team Description Paper

for RoboCup@Home 2020

Markovito Software and External Devices

The base platform is a Robotnik RB-1 model, modified whith a series of after-
market devices to improve the robot’s sensing capabilities.

Fig. 6. Robot Markovito

Robot’s Software Description

For our robot we are using the following soft-
ware:

– Platform: Ubuntu 14.0 Operating System.
– Speech recognition: Pocket Sphinx.
– Face recognition: Tiny Face Detector.
– Object recognition: custom software based on

CNN classification over depth images segmen-
tation.

– Arm control: Kinova driver, MoveIt.
– Manipulation: GraspIt.
– Grasp Confirmation: custom software based

on CNN classification over depth images seg-
mentation.

– Obstacle avoidance: custom modification of the
AGAS navigation package Homer.

External Devices

Markovito robot relies on the following exter-
nal hardware:

– Torso attached Intel Laptop.
– Wireless accessed GPU Laptop.

Robot software and hardware specification sheet


	Introduction
	Group's description and research focus
	Markovito's Architecture
	Markovito's skills and current work
	Indoor Navigation
	People tracking
	Speech Recognition and Synthesis
	Object and people recognition
	Object manipulation and grasping

	Conclusions and future work

